An Inaccessible Group

Martin J. Dunwoody

Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO9 5NH.

1. Introduction

Stallings [6] showed that a group G has more than one end if and only if $G \approx A *_F B$, where F is finite, $A \neq F \neq B$, or G is an HNN-extension with finite edge group F.

A finitely generated group G is said to be accessible if it is the fundamental group of a graph of groups in which all edge groups are finite and every vertex group has at most one end. We say that G is inaccessible if it is not accessible.

Let d(G) denote the minimal number of generators of the finitely generated group G. It follows from Grushko's Theorem that d(G*H) = d(G) + d(H). It follows that G is a free product of indecomposable groups, i.e. groups which cannot be written as a non-trivial free product. The problem of accessibility is whether we can replace the free product with free product with finite amalgamation in the last statement. (The number of HNN-decompositions is bounded by d(G).) However, there is no analogue of Grushko's Theorem. In fact, if G is accessible then any process of successively decomposing G, and the factors that arise in the process, terminates after a finite number of steps. See [2] for a proof of this and related results.

Linnell [5] proved that if G is finitely generated then, for any reduced decomposition of G as a graph of groups X in which all edge groups are finite, there is a bound B such that $\sum_{e \in E} 1/|G_e| < B$, where E is the edge set of X. Thus for any k > 0, there are at most kB edges e such that $|G_e| \le k$. In [3] I showed that G is accessible if G is almost finitely presented. Groves and Swarup [4] have extended this result to a somewhat larger class of groups. This paper contains the construction of a finitely generated inaccessible group. C.T.C. Wall [8] conjectured that all finitely generated groups are accessible. On the other hand, Bestvina and Feighn [1] have given an example of a finitely generated group which does not satisfy a generalized accessibility condition

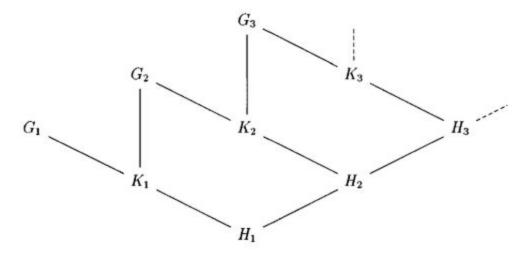
in which decompositions over torus subgroups are allowed. It was by thinking about their construction that I thought of the example presented here.

Let X be a connected locally finite graph. Thomassen and Woess [7] have defined X to be accessible if for some positive integer n any pair of ends of X can be separated by removing at most n edges. They show, by using results from [2] Chapter 2, that a finitely generated group G is accessible as a group if and only if its Cayley graph (with respect to a finite generating set) is accessible as a graph. They investigate alternative definitions for a graph to be accessible.

I am very grateful to Warren Dicks, Peter Kropholler and Martin Roller for providing short proofs that the group J is inaccessible to replace my laboured argument.

2. Constructing the example

Suppose we have a lattice of groups as shown.



In the diagram lines represent proper inclusions. We also require that G_{i+1} is generated by K_i and H_{i+1} .

We show how to associate an inaccessible group with such a group lattice, when K_i (and hence H_i) is finite for all i, and G_1 is finitely generated. In the next section we show that such a lattice of groups exists.

Let P be the fundamental group of the graph of groups



In P, we have $H_1 < H_2 < \ldots < H_{\omega} := \bigcup_{i \in \mathbb{N}} H_i$. Since H_{ω} is countable it can be embedded in a finitely generated group H. Let J be the free product with

amalgamation $P *_{H_{\omega}} H$. Now J is generated by G_1 and H. For suppose L is the subgroup generated by G_1 and H. It suffices to show that $G_i < L$ for all $i \in \mathbb{N}$. But if $G_i < L$, then $K_i < L$ and $H_{i+1} < L$ and so $G_{i+1} < L$. It follows by induction that $G_i < L$ for all $i \in \mathbb{N}$. Hence J is finitely generated. Let P_n be the fundamental group of the graph of groups

$$G_1$$
 G_2 G_3 G_{n-1} G_n
 K_1 K_2 K_{n-1}

and let Q_n be the fundamental group of the graph of groups

$$G_{n+1}$$
 G_{n+2} G_{n+3}
 K_{n+1} K_{n+2}

Thus $P = P_n *_{K_n} Q_n$. Since $H_\omega < Q_n$, J decomposes as

$$J = P_n *_{K_n} (Q_n *_{H_\omega} H),$$

and so if $J_n = Q_n *_{H_\omega} H$, J decomposes as the fundamental group of the graph of groups

It follows immediately that J is inaccessible.

3. Constructing the lattice

In this section we construct a lattice of groups as specified in the previous section. Let H be the subgroup of $\operatorname{Symm}(\mathbb{Z})$ generated by the transposition t=(0,1) and the shift map s, where s(i)=i+1. Put $t_i=s^its^{-i}=(i,i+1)$. Let $H_i=\langle t_{-i},t_{-i+1},\ldots,t_0,t_1,\ldots,t_{i-1}\rangle$. Thus H_i is isomorphic to the symmetric group S_{2i+1} . Let V be the group of all maps $\mathbb{Z} \to \mathbb{Z}_2$ with finite support, under the usual addition. Then H acts on V by vh(n)=v(h(n)) for all $v\in V$, $h\in H$ and $n\in \mathbb{Z}$. Let V_i be the subgroup of V consisting of all maps with support $[-i,i]=\{-i,-i+1,\ldots,0,1,\ldots,i\}$. Let $G_i'=V_i\rtimes H_i$. Let $z_i\in V_i$ with $z_i(n)=1$ for $n\in [-i,i]$, then z_i is central in G_i' . Let $K_i=\langle z_i,H_i\rangle$ and note that $K_i=\mathbb{Z}_2\times H_i$. For $i=1,2,\ldots$ let G_i be an isomorphic copy of G_i' and identify K_i with its image in G_i . We can then assume that $K_i=G_i\cap G_{i+1}$. It is left to the reader to check that the lattice of groups is as required.

References

- M. Bestvina and M. Feighn, A counterexample to generalized accessibility, in: Arboreal Group Theory, MSRI Publications 19, Springer, 1991, pp. 133-142.
- [2] W. Dicks and M. J. Dunwoody, Groups Acting On Graphs, Cambridge University Press, 1989.
- [3] M.J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), pp. 449-457.
- [4] J.R.J. Groves and G.A. Swarup, Remarks on a technique of Dunwoody, J. Pure Appl. Algebra 75 (1991), pp. 259-269.
- P. A. Linnell, On accessibility of groups, J. Pure Appl. Algebra 30 (1983), pp. 39-46.
- [6] J. R. Stallings, Group Theory And Three-Dimensional Manifolds, Yale Math. Monographs 4, Yale University Press, 1971.
- [7] C. Thomassen and W. Woess, Vertex-transitive graphs and accessibility, preprint, The Technical University and Universita di Milano, 1991, to appear in J. Combin. Th. (Ser. B).
- [8] C. T. C. Wall, Pairs of relative cohomological dimension one, J. Pure Appl. Algebra 1 (1971), pp. 141-154.