Category: Uncategorized

  • Coarse Arcs in Metric Spaces (Musings)

    Suppose $(X, d)$ is a metric space.

    An arc is defined as a homeomorphism from an interval to $X$ (and its range).

    Let $x, y \in X$ be any two points in an arc $J$. Then $[x, y]$ denotes the subset of the arc from $x$ to $y$.

    We say $J$ is a quasi-arc if there is a number $L \geq 1$ such that $ diam ([x, y]) < L \cdot d(x, y) $ for all $x, y \in J$. This is a classical concept from geometry of metric spaces.

    We propose to generalize this notion into that of coarse-arc as follows. $J$ is a $f-$ coarse arc if there exists a function $f : \mathbb{R} \to \mathbb{R} $ such that $ diam ([x, y]) < f (d(x, y)) $ for all $x, y \in J$

    Moreover we say a metric space $X$ has an intrinsic curvature $f$ if any arc $J$ in $X$ can be approximated by a $f$-coarse arc and cannot be approximated by any $f’$-coarse arc such that $f’ < f$.

    What is known about such coarse arcs?

  • āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āϏāĻĒā§āϤāϭ⧁āϜ (Heptagon of Hagia Sofia)

    āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻž āύāĻŋāĻ°ā§āĻŽāĻžāϪ⧇āϰ āĻ…āĻ™ā§āĻ• āĻ•āώ⧇āĻ›āĻŋāϞ⧇āύ āĻĻ⧁āχ āĻ—ā§āϰ⧀āĻ• āĻ—āĻŖāĻŋāϤāĻœā§āĻž; āĻ…ā§āϝāĻžāĻ¨ā§āĻĨ⧇āĻŽāĻŋ⧟āĻžāϏ āφāϰ āχāϏāĻŋāĻĻā§‹āϰāĨ¤ āϏ⧇ āĻāĻ• āĻŽāĻ¸ā§āϤ āĻ…āĻŸā§āϝāĻžāϞāĻŋāĻ•āĻž āύāĻŋāĻ°ā§āĻŽāĻžāϪ⧇āϰ āĻ…āĻ™ā§āĻ•āĨ¤ āĻĒā§āϰāĻžāĻšā§€āύ āĻĻ⧁āύāĻŋ⧟āĻžāϰ āĻ…āĻˇā§āϟāĻŽ āĻŦāĻŋāĻ¸ā§āĻŽā§ŸāĨ¤ āϤāĻžāϕ⧇ āĻ—āĻĄāĻŧāϤ⧇ āϝ⧇ āĻŦ⧇āĻļ āϜāϟāĻŋāϞ āĻ—āĻŖāĻŋāϤ āĻ•āώāϤ⧇ āĻšāĻŦ⧇ āϤāĻžāϤ⧇ āĻ…āĻŦāĻžāĻ• āĻšāĻ“ā§ŸāĻžāϰ āĻ•āĻŋāϛ⧁ āύ⧇āχāĨ¤ āϤāĻŦ⧁ āĻ…āĻŦāĻžāĻ• āĻšā§Ÿā§‡āĻ›āĻŋāĨ¤ āĻ•āĻžāϰāĻŖ āĻāĻ•āϟāĻž āĻĒāĻŋāϞ⧇ āϚāĻŽāĻ•āĻžāύ⧋ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ!

    āĻāχ āϰāĻšāĻ¸ā§āϝāĻŽā§Ÿ āϏāĻĒā§āϤāϭ⧁āĻœā§‡āϰ āĻ—āĻ˛ā§āĻĒ āϞāĻŋāĻ–āĻ›āĻŋāĨ¤ āĻĒā§āϰāĻžāĻšā§€āύ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāϰ āĻāχ āĻŽāĻšāĻžāϏāĻŽāĻžāϰ⧋āĻš āĻĨ⧇āϕ⧇ āφāĻŽāϰāĻž āύāĻŦā§€āύāϰāĻž āĻšā§ŸāϤ āĻ•āĻŋāϛ⧁ āĻļāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŦāĨ¤ āĻŽāĻ—āĻœā§‡āϰ āϕ⧋āώāϗ⧁āϞ⧋ āϰāϏāĻĻ āĻĒāĻžāĻŦ⧇āĨ¤

    āĻ›āĻŋāϞ⧋ āϚāĻžāĻ°ā§āϚ āĻĒā§āϰāĻžā§Ÿ ⧝ā§Ļā§Ļ āĻŦāĻ›āϰāĨ¤ āĻšā§Ÿā§‡āĻ›āĻŋāϞ āĻŽāϏāϜāĻŋāĻĻ āϤāĻžāϰāĻĒāϰ ā§Ģā§Ļā§Ļ āĻŦāĻ›āϰāĨ¤ āĻŽāĻžāĻāĻ–āĻžāύ⧇ āĻŦāĻ›āϰ ā§Žā§Ļ āϏ⧇ āĻ›āĻŋāϞ⧋ āĻŦāĻŋāϞāϕ⧁āϞ āϏ⧇āϕ⧁āϞāĻžāϰ āĻŽāĻŋāωāϜāĻŋ⧟āĻžāĻŽāĨ¤ ⧍ā§Ļ⧍ā§Ļ āϏāĻžāϞ⧇ āϏ⧇ āφāĻŦāĻžāϰ āĻŽāϏāϜāĻŋāĻĻ āĻšā§Ÿā§‡āϛ⧇āĨ¤ āĻ āĻšā§‡āύ āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžā§Ÿ āĻĒāĻž āĻĢ⧇āϞāϞ⧇ āĻŦāĻŋāĻ¸ā§āĻŽāĻŋāϤ āύāĻž āĻšā§Ÿā§‡ āωāĻĒāĻžā§Ÿ āύ⧇āχāĨ¤ āĻŦāϏāĻĢāϰāĻžāϏ āϏāĻžāĻ—āϰ⧇āϰ āϤ⧀āϰ⧇ āϏāĻšāĻ¸ā§āϰāĻžāĻŦā§āĻĻ āĻĒā§āϰāĻžāĻšā§€āύ āĻŽāĻšāĻžāĻ…āĻŸā§āϝāĻžāϞāĻŋāĻ•āĻžāĨ¤ āφāĻ•ā§āώāϰāĻŋāĻ• āĻ…āĻ°ā§āĻĨ⧇ āϏ⧇ āĻĒāĻŦāĻŋāĻ¤ā§āϰ āĻœā§āĻžāĻžāύ⧇āϰ āĻŽāĻ¨ā§āĻĻāĻŋāϰāĨ¤ āϝ⧀āĻļ⧁ āĻ–ā§āϰ⧀āĻˇā§āĻŸā§‡āϰ āĻĒā§āϰāϤāĻŋ āϏāĻŽāĻ°ā§āĻĒāĻŋāϤ āωāĻĒāĻžāϏāύāĻžāϞ⧟āĨ¤ ā§§ā§§ā§Ļā§Ļā§Ļ āĻ•ā§āϰ⧀āϤāĻĻāĻžāϏ⧇āϰ āĻšāĻžāϤ⧇ āĻ—āĻĄāĻŧāĻž āĻĻ⧇āĻŦāϤāĻžāϰ āϘāϰāĨ¤

    āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āĻāĻ•āĻĻāĻŽ āϕ⧇āĻ¨ā§āĻĻā§āϰ⧇ āφāϛ⧇ āĻāĻ• āĻ…āĻĻ⧃āĻļā§āϝ āϏāĻĒā§āϤāϭ⧁āϜāĨ¤ āωāχāĻ•āĻŋāĻĒāĻŋāĻĄāĻŋ⧟āĻžā§Ÿ āϏāĻŽā§āĻ­āĻŦāϤ āϤāĻžāϰ āωāĻ˛ā§āϞ⧇āĻ– āύ⧇āχāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āφāϧ⧁āύāĻŋāĻ• āĻ•āĻŋāϛ⧁ āĻ—āĻŦ⧇āώāĻŖāĻžāĻĒāĻ¤ā§āϰ⧇ āϤāĻžāϕ⧇ āϖ⧁āρāĻœā§‡ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤ āĻ—āĻĄāĻŧāύāϟāĻž āĻĻ⧇āϖ⧇ āĻāĻ•āϟāĻž āĻ–āϟāĻ•āĻž āϞ⧇āϗ⧇āĻ›āĻŋāϞāĨ¤ āĻāĻ•āϟ⧁ āĻĒāĻĄāĻŧ⧇ āĻĻ⧇āĻ–āϞāĻžāĻŽ āĻ­āĻžāĻŦāύāĻžāϟāĻž āĻŽāĻŋāĻĨā§āϝāĻž āύ⧟āĨ¤

    āĻ…āĻĻ⧃āĻļā§āϝ āϏāĻĒā§āϤāϭ⧁āĻœā§‡āϰ āĻ…āĻ¸ā§āϤāĻŋāĻ¤ā§āĻ¤ā§āĻŦ āĻŦ⧁āĻāϤ⧇ āϗ⧇āϞ⧇ āĻāĻ•āϟ⧁ āĻŽāĻžāĻĨāĻž āĻ–āĻžāϟāĻžāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āĻŦā§āϝāĻžāϏāĻŋāϞāĻŋāĻ•āĻž (āĻĒā§āϰāϧāĻžāύ āϏāĻ­āĻžāϘāϰ)-āĻāϰ āĻŽāĻžāĻāĻ–āĻžāύāϟāĻž āĻāĻ•āϟāĻž āϞāĻŽā§āĻŦāĻžāĻŸā§‡ āϚāϤ⧁āĻ°ā§āϭ⧁āϜāĨ¤ āϏ⧇āχ āϚāϤ⧁āĻ°ā§āϭ⧁āĻœā§‡āϰ āĻĒ⧁āĻŦ āĻŦāĻžāĻšā§āϤ⧇ āĻāĻ•āϟāĻž āĻ…āĻ°ā§āϧāĻ—ā§‹āϞāĻžāĻ•āĻžāϰ āĻ…āĻ‚āĻļ āϜ⧁āĻĄāĻŧ⧇ āϗ⧇āϛ⧇āĨ¤ āĻāχ āĻ…āĻ‚āĻļāϕ⧇ āĻ–ā§āϰ⧀āĻˇā§āϟāĻžāύāϰāĻž āĻŦāϞ⧇āύ āĻ…ā§āϝāĻžāĻĒāϏ (apse)āĨ¤ āĻ…āĻ°ā§āĻĨā§‹āĻĄāĻ•ā§āϏ āĻ–ā§āϰ⧀āĻˇā§āϟāĻžāύāϰāĻž āĻā§āϝāĻžāĻĒāϏ⧇āϰ āĻŽāĻžāĻāĻ–āĻžāύ⧇ āĻŦ⧇āĻĻā§€ āĻ—āĻĄāĻŧāϤ⧇āύāĨ¤ āϏ⧇āχ āĻŦ⧇āĻĻā§€āϤ⧇ (āĻ…āϞāϟāĻžāϰ⧇) āĻŦāϞāĻŋ āĻĻ⧇āĻ“ā§ŸāĻžāϰ āϰ⧇āĻ“ā§ŸāĻžāϜ āĻ›āĻŋāϞāĨ¤ āĻŽāϏāϜāĻŋāĻĻ āĻšāĻ“ā§ŸāĻžāϰ āĻĒāϰ āĻ…āĻŦāĻļā§āϝ āϏ⧇āχ āĻ…āϞāϟāĻžāϰ⧇āϰ āĻ…āĻ¸ā§āϤāĻŋāĻ¤ā§āĻ¤ā§āĻŦ āĻŽā§āϛ⧇ āϗ⧇āϛ⧇āĨ¤

    āĻĒā§āϰāĻžāĻšā§€āύ āϚāĻžāĻ°ā§āĻšā§‡ āĻŦā§āϝāĻžāϏāĻŋāϞāĻŋāĻ•āĻžāϰ āĻāχ āĻšāϤ āĻ—āĻĄāĻŧāύāĨ¤ āĻ…ā§āϝāĻžāĻĒāϏ⧇āϰ āφāĻ•ā§ƒāϤāĻŋ āĻ…āĻ°ā§āϧāĻ—ā§‹āϞāĻžāĻ•āĻžāϰāĨ¤ āφāϗ⧇āχ āĻŦāϞ⧇āĻ›āĻŋ āϝ⧇ āϏ⧇ āϏāĻ­āĻžāĻ—ā§ƒāĻšā§‡āϰ āϚāϤ⧁āĻ°ā§āϭ⧁āϜ āĻŽāĻ§ā§āϝāĻ­āĻžāϗ⧇āϰ āϏāĻžāĻĨ⧇ āϜ⧁āĻĄāĻŧ⧇ āĻĨāĻžāϕ⧇āĨ¤ āĻāχ āĻ…āĻ°ā§āϧāĻ—ā§‹āϞāĻžāĻ•āĻžāϰ āĻ…āĻ‚āĻļāϕ⧇ āϝāĻĻāĻŋ āĻŽāύ⧇ āĻŽāύ⧇ āĻĒā§‚āĻ°ā§āĻŖāĻŦ⧃āĻ¤ā§āϤ āĻ•āϰ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āϝāĻžā§Ÿ, āϤāĻžāĻšāϞ⧇ āϤāĻžāϕ⧇ circumscribe āĻ•āϰ⧇ (āĻ…āĻ°ā§āĻĨāĻžā§Ž āϘāĻŋāϰ⧇) āĻĨāĻžāĻ•āĻŦ⧇ āĻāĻ•āϟāĻž āĻ•āĻžāĻ˛ā§āĻĒāύāĻŋāĻ• āĻŦāĻšā§āϭ⧁āϜāĨ¤ āĻāχ āĻŦāĻšā§āϭ⧁āϜāϕ⧇ āύāĻŋāĻ°ā§āĻŽāĻžāϪ⧇āϰ āĻĒāϰ āφāϰ āĻšā§‹āϖ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžā§Ÿ āύāĻžāĨ¤ āĻļ⧁āϧ⧁ āϤāĻžāϰ āĻ•ā§Ÿā§‡āĻ•āϟāĻž āĻŦāĻžāĻšā§ āĻŦāϰāĻžāĻŦāϰ āĻĻ⧇āĻ“ā§ŸāĻžāϞ āύāĻŋāĻ°ā§āĻŽāĻŋāϤ āĻšā§ŸāĨ¤ āϏ⧇āϏāĻŦ āĻĻā§‡ā§ŸāĻžāϞ⧇ āĻŦāĻĄāĻŧ āĻŦāĻĄāĻŧ āϜāĻžāύāϞāĻž āĻĨāĻžāϕ⧇āĨ¤ āύāĻŋāĻ°ā§āĻŽāĻžāϤāĻžāϰāĻž āĻāĻŽāύ āĻ­āĻžāĻŦ⧇ āĻāχ āϜāĻžāύāϞāĻžāϗ⧁āϞ⧋ āĻŦāĻžāύāĻžāϤ⧇āύ āφāϰ āĻā§āϝāĻžāĻĒāϏ⧇āϰ āĻĻā§‡ā§ŸāĻžāϞ āĻāĻŽāύ āĻā§āϝāĻžāĻ™ā§āϗ⧇āϞ⧇ (āϕ⧋āϪ⧇) āύāĻŋāĻ°ā§āĻŽāĻžāĻŖ āĻ•āϰāϤ⧇āύ āϝ⧇ āĻŦāĻŋāĻļ⧇āώ āĻŽāĻžāĻšā§‡āĻ¨ā§āĻĻā§āϰāĻ•ā§āώāϪ⧇ āϏ⧂āĻ°ā§āϝ⧇āϰ āφāϞ⧋āĻ•āϰāĻļā§āĻŽāĻŋ āĻŦāϞāĻŋāϰ āĻŦ⧇āĻĻā§€āϤ⧇ (āĻ…āϞāϟāĻžāϰ⧇) āĻĒā§āϰāĻ•ā§āώāĻŋāĻĒā§āϤ āĻšāϤāĨ¤ āϏāĻŽā§āĻ­āĻŦāϤ āĻĻ⧇āĻŦāϤāĻžāϰ āϘāϰāϕ⧇ āφāϰāĻ“ āĻ…āĻĒāĻžāĻ°ā§āĻĨāĻŋāĻŦ āϰ⧂āĻĒ āĻĻ⧇āĻ“ā§ŸāĻžāϰ āϜāĻ¨ā§āϝ āĻāϏāĻŦ āĻ•āĻžāĻŖā§āĻĄ āĻ•āϰāĻž āĻšāϤāĨ¤

    āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āϚāĻžāĻ°ā§āĻšā§‡ āĻāχ (āĻ…āĻĻ⧃āĻļā§āϝ) āĻŦāĻšā§āϭ⧁āϜāϟāĻž (āϝ⧇ āĻ•āĻŋāύāĻž āĻ…ā§āϝāĻžāĻĒāϏāϕ⧇ āϘāĻŋāϰ⧇ āφāϛ⧇) āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĒāĻžā§āϚāϭ⧁āϜ āĻ…āĻĨāĻŦāĻž āώāĻĄāĻŧāϭ⧁āϜ āĻšāϤāĨ¤ āĻ•āĻžāϰāĻŖāϟāĻž āĻāĻ•āĻĻāĻŽ āĻ—āĻžāĻŖā§€āϤāĻŋāĻ•āĨ¤ āĻ•āĻŽā§āĻĒāĻžāϏ āφāϰ āĻ¸ā§āĻŸā§āϰ⧇āϟāĻāϜ (āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻĻāĻžāĻ— āύāĻž āĻĻ⧇āĻ“ā§ŸāĻž āϰ⧁āϞāĻžāϰ) āĻĻāĻŋā§Ÿā§‡ āϏāĻŽāĻŦāĻžāĻšā§ āĻŦāĻšā§āϭ⧁āϜ āϝāĻĻāĻŋ āφāρāĻ•āϤ⧇ āϚāĻžāĻ“ āϤāĻžāĻšāϞ⧇ āĻ¤ā§āϰāĻŋāϭ⧁āϜ āφāρāĻ•āϤ⧇ āĻĒāĻžāϰāĻŦ⧇, āϚāϤ⧁āĻ°ā§āϭ⧁āϜ āĻĒāĻžāϰāĻŦ⧇, āĻĒāĻžā§āϚāϭ⧁āϜ āĻĒāĻžāϰāĻŦ⧇, āώāĻĄāĻŧāϭ⧁āϜ āĻĒāĻžāϰāĻŦ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ āϏāĻĒā§āϤāϭ⧁āϜ āĻĒāĻžāϰāĻŦ⧇ āύāĻž!

    āϕ⧇āύ āĻĒāĻžāϰāĻŦ⧇ āύāĻž?

    āϏ⧇āϟāĻž āĻŦ⧁āĻāϤ⧇ āĻŽāĻžāύ⧁āώ⧇āϰ āĻĒā§āϰāĻžā§Ÿ ⧍ā§Ļā§Ļā§Ļ āĻŦāĻ›āϰ āϏāĻŽā§Ÿ āϞ⧇āϗ⧇āϛ⧇āĨ¤

    āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āϝāĻĻāĻŋ constructible āϏāĻ‚āĻ–ā§āϝāĻž āĻšā§Ÿ, āϤāĻŦ⧇āχ āϤāĻžāϕ⧇ āĻ•āĻŽā§āĻĒāĻžāϏ āφāϰ āĻ¸ā§āĻŸā§āϰ⧇āϟāĻāϜ āĻĻāĻŋā§Ÿā§‡ āφāρāĻ•āĻž āϏāĻŽā§āĻ­āĻŦāĨ¤ āĻ•āĻžāϕ⧇ āĻŦāϞ⧇ āĻ•āĻ¨ā§āϏāĻŸā§āϰāĻžāĻ•āϟāĻŋāĻŦāϞ āϏāĻ‚āĻ–ā§āϝāĻž? āϝāĻĻāĻŋ āϤ⧁āĻŽāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻžāϕ⧇ āϏāϏ⧀āĻŽ āĻ—ā§‹āϟāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ (finite number of integer) āϝ⧋āĻ—, āĻŦāĻŋā§Ÿā§‹āĻ—, āϗ⧁āĻŖ, āĻ­āĻžāĻ— āφāϰ āĻŦāĻ°ā§āĻ—āĻŽā§āϞ āĻĻāĻŋā§Ÿā§‡ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰ⧋ āϤāĻŦ⧇āχ āϏ⧇ āĻšāĻŦ⧇ constructibleāĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻ•āϰāĻž āϏāĻŽā§āĻ­āĻŦ āϝ⧇ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āĻāχ āϧāϰāϪ⧇āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝāϕ⧇āχ āĻ•āĻŽā§āĻĒāĻžāϏ āφāϰ āĻ¸ā§āĻŸā§āϰ⧇āϟāĻāϜ āĻĻāĻŋā§Ÿā§‡ āφāρāĻ•āĻž āϝāĻžā§ŸāĨ¤ āϝāĻĻāĻŋāϚ āĻāϟāĻž āĻĒā§āϰāĻŽāĻžāĻŖ āĻ•āϰāϤ⧇ āĻŽāĻžāύ⧁āώ⧇āϰ āĻšāĻžāϜāĻžāϰ āĻšāĻžāϜāĻžāϰ āĻŦāĻ›āϰ āϏāĻŽā§Ÿ āϞ⧇āϗ⧇āϛ⧇āĨ¤ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āĻœā§‡āϰ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻ•āĻ¨ā§āϏāĻŸā§āϰāĻžāĻ•ā§āϟāĻŋāĻŦāϞ āύ⧟āĨ¤ āϤāĻžāχ āϤāĻžāϕ⧇ āĻ•āĻŽā§āĻĒāĻžāϏ āφāϰ āĻ¸ā§āĻŸā§āϰ⧇āϟāĻāϜ āĻĻāĻŋā§Ÿā§‡ āφāρāĻ•āĻž āϝāĻžā§Ÿ āύāĻžāĨ¤

    āĻ…āϤāĻāĻŦ āĻŦ⧁āĻāϤ⧇āχ āĻĒāĻžāϰāĻ› āϝ⧇ āĻā§āϝāĻžāĻĒāϏ⧇āϰ āĻŦāĻžāχāϰ⧇ āϝ⧇ āĻ…āĻĻ⧃āĻļā§āϝ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ āĻā§āϝāĻžāĻ¨ā§āĻĨ⧇āύāĻŋ⧟āĻžāĻŽ āφāϰ āχāϏ⧇āĻĻā§‹āϰ āĻ—āĻĄāĻŧ⧇āĻ›āĻŋāϞ⧇āύ āϤāĻžāϰ āύāĻŋāρāϖ⧁āϤ āύāĻŋāĻ°ā§āĻŽāĻžāĻŖ āĻ•āĻŽā§āĻĒāĻžāϏ āφāϰ āĻ¸ā§āĻŸā§āϰ⧇āϟāĻāϜ āĻĻāĻŋā§Ÿā§‡ āϏāĻŽā§āĻ­āĻŦ āĻšāϤ āύāĻžāĨ¤ āϤāĻžāĻšāϞ⧇ āĻ•āĻŋ āĻ­āĻžāĻŦ⧇ āĻ…āϏāĻŽā§āĻ­āĻŦāϕ⧇ āϏāĻŽā§āĻ­āĻŦ āĻ•āϰ⧇āĻ›āĻŋāϞ⧇āύ āϤāĻžāϰāĻž?

    āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāϤ⧇ āφāϰ⧇āĻ• āϰāĻ•āĻŽā§‡āϰ (āύāĻŋāĻ°ā§āĻŽāĻžāĻŖ) āĻ•āĻ¨ā§āϏāĻŸā§āϰāĻžāĻ•āĻļāύ āĻšā§ŸāĨ¤ āĻāχ āĻ•āύāĻ¸ā§āĻŸā§āϰāĻžāĻ•āĻļāύāϟāĻžāϰ āωāĻĻā§āĻ­āĻžāĻŦāĻ• āϏāĻŽā§āĻ­āĻŦāϤ āφāĻ°ā§āĻ•āĻŋāĻŽāĻŋāĻĄāĻŋāϏāĨ¤ āĻāϕ⧇ āĻŦāϞ⧇ neusis constructionāĨ¤ āĻāχ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ āφāρāĻ•āĻž āϝāĻžā§ŸāĨ¤ āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āĻ¸ā§āĻĨāĻĒāϤāĻŋāϰāĻž āĻāχ āĻĒāĻĻā§āϧāϤāĻŋ āϜāĻžāύāϤ⧇āύ āĻŦāϞ⧇āχ āĻŽāύ⧇ āĻšā§ŸāĨ¤ āĻāχ āĻ•āĻžā§ŸāĻĻāĻžā§Ÿ āĻ…āύ⧇āĻ• āĻ­āĻžāĻŦ⧇āχ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ āφāρāĻ•āĻž āϝāĻžā§ŸāĨ¤ āφāϧ⧁āύāĻŋāĻ• āĻ•āĻžāϞ⧇ āĻœā§‡āĻ­āĻŋāĻĄ āϜāύāϏāύ āϞāĻŋāχāĻ¸ā§āĻ• āĻāĻ•āϟāĻž āĻ•āĻžā§ŸāĻĻāĻž āĻŦāĻžāϰ āĻ•āϰ⧇āϛ⧇āύāĨ¤ āĻāχ āĻ­āĻĻā§āϰāϞ⧋āĻ• āĻļāϖ⧇āϰ āĻ—āĻŖāĻŋāϤāĻœā§āĻžāĨ¤ āĻĒā§āϰāĻĨāĻŽ āĻœā§€āĻŦāύ⧇ āĻ•āĻŽāĻŋāĻ•ā§āϏ āφāρāĻ•āϤ⧇āύ, āϛ⧋āϟāĻĻ⧇āϰ āϜāĻ¨ā§āϝ āϞāĻŋāĻ–āϤ⧇āύāĨ¤ āĻĒāϰ⧇ āĻ—āĻŖāĻŋāϤ⧇ āφāĻ—ā§āϰāĻš āϜāĻ¨ā§āĻŽāĻžā§ŸāĨ¤ āĻ—āĻŖāĻŋāϤ āĻāĻŦāĻ‚ āϚāĻŋāĻ¤ā§āϰāĻ•āϞāĻž āύāĻŋā§Ÿā§‡ āĻāϏāĻžāϰ⧇āϰ āĻŽāϤ āĻāρāϰ āĻ•āĻžāϜāĻ“ āĻĒā§āϰāĻ–ā§āϝāĻžāϤāĨ¤

    āϜāύāϏāύ⧇āϰ āĻ•āĻžā§ŸāĻĻāĻžāϟāĻž āĻ–āĻžāύāĻŋāĻ•āϟāĻž āĻāϰāĻ•āĻŽ (āĻ›āĻŦāĻŋāϰ āϏāĻžāĻĨ⧇ āĻŽāĻŋāϞāĻŋā§Ÿā§‡ āύāĻŋāϤ⧇ āĻĒāĻžāϰ⧋) –

    āϰ⧁āϞāĻžāϰ⧇āϰ āĻ“āĻĒāϰ āĻĻ⧁āĻŸā§‹ āĻĻāĻžāĻ— āĻĻāĻŋā§Ÿā§‡ āύāĻžāĻ“āĨ¤ āĻĻāĻžāĻ— āĻĻ⧁āĻŸā§‹ āĻāϕ⧇ āĻ…āĻĒāϰ⧇āϰ ā§§ āχāĻžā§āϚāĻŋ āϤāĻĢāĻžāϤ⧇ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤

    āĻ•āĻžāĻ—āĻœā§‡ āĻāĻ•āϟāĻž āϰ⧇āĻ–āĻžāĻ‚āĻļ, AB, āφāρāϕ⧋ (ā§§ āχāĻžā§āϚāĻŋ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ)āĨ¤ āϤāĻžāϰ āĻ“āĻĒāϰ⧇ AC āϞāĻŽā§āĻŦ āφāρāϕ⧋āĨ¤ āϤāĻžāϰāĻĒāϰ BC āϜ⧁āĻĄāĻŧ⧇ āĻĻāĻžāĻ“āĨ¤ āĻāĻŦāĻžāϰ B-āϕ⧇ āϕ⧇āĻ¨ā§āĻĻā§āϰ āφāϰ BC-āϕ⧇ āϰ⧇āĻĄāĻŋ⧟āĻžāϏ āĻ•āϰ⧇ āĻāĻ•āϟāĻž āĻŦ⧃āĻ¤ā§āϤ āφāρāϕ⧋āĨ¤ AB-āϰ āϕ⧇āĻ¨ā§āĻĻā§āϰāĻŦāĻŋāĻ¨ā§āĻĻ⧁āϤ⧇ AB-āϰ āĻ“āĻĒāϰ āĻāĻ•āϟāĻž āϞāĻŽā§āĻŦ L āφāρāϕ⧋āĨ¤

    āĻāĻŦāĻžāϰ āύāĻŋāωāϏāĻŋāϏ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻāĻ• āχāĻžā§āϚāĻŋ āϏāĻŽāĻžāύ āĻāĻ•āϟāĻž āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ-āϕ⧇ āĻ–āĻžāĻĒ⧇ āĻ–āĻžāĻĒ⧇ āĻŦāϏāĻžāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻĒā§āϰāĻĨāĻŽā§‡ A āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻ“āĻĒāϰ āĻ¸ā§āϕ⧇āϞāϟāĻž āϞāĻŽā§āĻŦ āĻ­āĻžāĻŦ⧇ āĻŦāϏāĻžāĻ“āĨ¤ āϤāĻžāϰāĻĒāϰ A āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻĻāĻŋāϕ⧇ āϰ⧁āϞāĻžāϰāϟāĻž āĻšāĻžāϤ āĻĻāĻŋā§Ÿā§‡ āĻšā§‡āĻĒ⧇ āϰ⧇āϖ⧇ āĻ¸ā§āϕ⧇āϞ⧇āϰ āĻ…āĻĒāϰ āĻŽā§āĻ–āϟāĻž āĻ˜ā§‹āϰāĻžāϤ⧇ āĻĨāĻžāϕ⧋āĨ¤ āĻāĻŽāύ āĻāĻ•āϟāĻž āϜāĻžā§ŸāĻ—āĻž āĻ…āĻŦāϧāĻŋ āĻ˜ā§‹āϰāĻžāĻ“ āϝāĻžāϤ⧇ āĻ¸ā§āϕ⧇āϞ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻāĻ• āχāĻžā§āϚāĻŋ āĻŽāĻžāĻĒāϟāĻžāϰ āĻāĻ•āϟāĻž āĻĄāĻ—āĻž L-āĻāϰ āĻ“āĻĒāϰ āĻĨāĻžāϕ⧇ āφāϰ āĻāĻ•āϟāĻž āĻĄāĻ—āĻž āĻ āĻŋāĻ• āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ“āĻĒāϰāĨ¤ āϝ⧇ āĻĄāĻ—āĻžāϟāĻž L- āϕ⧇ āϛ⧇āĻĻ āĻ•āϰāϞ āϤāĻžāϰ āύāĻžāĻŽ āĻĻāĻžāĻ“ DāĨ¤ āĻāĻŦāĻžāϰ ADB-āϰ āĻ“āĻĒāϰ āĻāĻ•āϟāĻž āĻŦ⧃āĻ¤ā§āϤ āφāρāϕ⧋ āφāϰ AB-āϕ⧇ āĻāĻ•āϟāĻž āĻŦāĻžāĻšā§ āĻ•āϰ⧇ āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ āĻāρāϕ⧇ āĻĢ⧇āϞ⧋āĨ¤

    āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āĻĻ⧁āχ āĻ¸ā§āĻĨāĻĒāϤāĻŋ āϏāĻŽā§āĻ­āĻŦāϤ āĻāϰāĻ•āĻŽ āϕ⧋āύ⧋ āĻāĻ•āϟāĻž āĻĒāĻĻā§āϧāϤāĻŋ āϜāĻžāύāϤ⧇āύāĨ¤ āϤāĻžāχ āϤāĻžāϰāĻž āϏāĻŽāĻŦāĻžāĻšā§ āϏāĻĒā§āϤāϭ⧁āϜ āĻ—āĻĄāĻŧāϤ⧇ āĻĒ⧇āϰ⧇āĻ›āĻŋāϞ⧇āύāĨ¤ āĻĢāϞāĻžāĻĢāϞāϟāĻž āĻšā§Ÿā§‡āĻ›āĻŋāϞ⧋ āĻĻ⧃āĻļā§āϝāϤ āĻ…āϞ⧌āĻ•āĻŋāĻ•āĨ¤

    āĻĒāρāϚāĻŋāĻļ⧇ āĻĄāĻŋāϏ⧇āĻŽā§āĻŦāϰ⧇, āĻĻāĻŋāύāĻŽāĻžāύ⧇āϰ āϤ⧃āĻ¤ā§€ā§Ÿ āĻĒā§āϰāĻšāϰ⧇, āϏ⧂āĻ°ā§āϝ⧇āϰ āφāϞ⧋ āĻ āĻŋāĻ• āĻšāĻžāĻ‡ā§ŸāĻž āϏ⧋āĻĢāĻŋ⧟āĻžāϰ āĻ…āϞāϟāĻžāϰ⧇ āĻāϏ⧇ āĻĒāĻĄāĻŧāϤāĨ¤ āĻāχ āϏāĻŽā§ŸāϟāĻž āĻ–ā§āϰ⧀āĻˇā§āϟāĻžāύāĻĻ⧇āϰ āĻŽāϤ⧇ āĻāĻ•āϟāĻž āĻĒāĻŦāĻŋāĻ¤ā§āϰ āĻ•āĻžāϞāĻ–āĻ¨ā§āĻĄāĨ¤ āĻŦāϞ⧇ āϰāĻžāĻ–āĻž āĻ­āĻžāϞ⧋, āĻĒā§āϰāĻžāĻšā§€āύāĻ•āĻžāϞ⧇ āϘāĻ¨ā§āϟāĻž āĻŽāĻŋāύāĻŋāĻŸā§‡āϰ āĻšāĻŋāϏ⧇āĻŦāϟāĻž āĻāĻ•āϟ⧁ āĻ…āĻ¨ā§āϝāϰāĻ•āĻŽ āĻ›āĻŋāϞ⧋āĨ¤ āĻĻāĻŋāύ āϏāĻŦāϏāĻŽā§Ÿā§‡āχ āĻŦāĻžāϰ⧋ āϘāĻ¨ā§āϟāĻžāϰ, āϰāĻžāϤāĻ“ āĻŦāĻžāϰ⧋ āϘāĻ¨ā§āϟāĻžāϰāĨ¤ āĻ…āϤāĻāĻŦ āĻ‹āϤ⧁ āĻ…āύ⧁āϏāĻžāϰ⧇ āϘāĻ¨ā§āϟāĻžāϰ āĻŽāĻžāĻĒ āϛ⧋āϟāĻŦāĻĄāĻŧ āĻšāϤāĨ¤ āĻĒāρāϚāĻŋāĻļ⧇ āĻĄāĻŋāϏ⧇āĻŽā§āĻŦāϰ⧇āϰ āĻĒā§āϰāĻŦāϞ āĻļā§€āϤ⧇ āĻĒā§āϰāĻ­āĻžāϤ⧇āϰ āϤ⧃āĻ¤ā§€ā§Ÿ āϘāĻ¨ā§āϟāĻž āχāĻ¸ā§āϤāĻžāύāĻŦ⧁āϞ⧇ āĻ āĻŋāĻ• āĻ•āĻ–āύ āĻšāĻŦ⧇, āϏ⧇ āϏāĻŽā§Ÿ āϏ⧂āĻ°ā§āϝ⧇āϰ āφāϞ⧋ āϕ⧋āύ āĻā§āϝāĻžāĻ™ā§āϗ⧇āϞ⧇ āĻĒāĻĄāĻŧāĻŦ⧇, āϤāĻžāϰ āĻāĻ•āϟāĻž āϜāϟāĻŋāϞ āĻšāĻŋāϏ⧇āĻŦ āĻ•āώ⧇ āύāĻŋāĻ°ā§āĻŽāĻžāϤāĻžāϰ āĻā§āϝāĻžāĻĒāϏ āĻŦāĻžāύāĻŋā§Ÿā§‡āĻ›āĻŋāϞ⧇āύāĨ¤ āϏāĻĒā§āϤāϭ⧁āϜ āĻ—āĻĄāĻŧāϤ⧇ āĻšā§Ÿā§‡āĻ›āĻŋāϞ āϏ⧇āχ āĻ•āĻžāϰāϪ⧇āχāĨ¤

  • āϏāĻŦ Trapezium āĻ•āĻŋāĻ¨ā§āϤ⧁ Parallelogram āύ⧟

    āϏāĻŦ Trapezium āĻ•āĻŋāĻ¨ā§āϤ⧁ Parallelogram āύ⧟

    āĻĒā§āϰāĻĨāĻŽā§‡ āĻāϏ⧇āĻ›āĻŋāϞ⧋ āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋ⧟āĻžāĻŽāĨ¤ āĻāĻ•āĻž āύ⧟āĨ¤ āϤāĻŋāύ āϜāύāĨ¤

    āĻŦā§āϝāĻžāĻĒāĻžāϰāϟāĻž āĻ–ā§‹āϞāϏāĻž āĻ•āϰāĻž āϝāĻžāĻ•āĨ¤ āĻĒā§āϰāĻĨāĻŽā§‡ āĻāĻ•āϟāĻž āĻ¤ā§āϰāĻŋāϭ⧁āϜ āĻāρāϕ⧇ āĻĢ⧇āϞ⧋ āĻ—ā§āϰāĻžāĻĢ āĻĒ⧇āĻĒāĻžāϰ⧇āĨ¤ āĻĒā§āϰāϤāĻŋāϟāĻž āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻāĻ•āϟāĻž āĻ•āϰ⧇ coordinate āĻĨāĻžāĻ•āĻŦ⧇āĨ¤

    āĻ¤ā§āϰāĻŋāϭ⧁āϜ āĻāρāϕ⧇āĻ›āĻŋ āĻ—ā§āϰāĻžāĻĢ āĻĒ⧇āĻĒāĻžāϰ⧇

    āĻ¤ā§āϰāĻŋāϭ⧁āϜāϟāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āĻāĻ•āϟāĻž āĻĢāĻ°ā§āĻŽā§āϞāĻž āĻ–ā§‹āρāϜāĻž āϝāĻžāĻ•āĨ¤ āĻāĻŽāύāĻŋāϤ⧇ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšāĻšā§āϛ⧇

    $$ \frac{1}{2} \times base \times height $$

    āĻ•āĻŋāĻ¨ā§āϤ⧁ āφāĻŽāϰāĻž āĻ āĻŋāĻ• āϤ⧇āĻŽāύ āĻĢāĻ°ā§āĻŽā§āϞāĻž āϚāĻžāχāĻ›āĻŋ āύāĻžāĨ¤ āφāĻŽāϰāĻž āϕ⧋āύāĻŦāĻŋāĻ¨ā§āĻĻ⧁āĻĻ⧇āϰ coordinate āĻĻāĻŋā§Ÿā§‡ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āϞāĻŋāϖ⧇ āĻĢ⧇āϞāϤ⧇ āϚāĻžāχāĨ¤

    āϤāĻŋāύāĻŸā§‡ āϕ⧋āύ āĻĨ⧇āϕ⧇ x-axis-āĻāϰ āĻ“āĻĒāĻ• āϞāĻŽā§āĻŦ (perpendicular) āĻāρāϕ⧇ āύāĻžāĻ“āĨ¤ āϏāĻšāϏāĻž āϤāĻŋāύāĻŸā§‡ āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋ⧟āĻžāĻŽ āφāĻŦāĻŋāĻ°ā§āϭ⧁āϤ āĻšāĻŦ⧇āĨ¤

    āĻĻ⧁āĻŸā§‹ āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋ⧟āĻžāĻŽ āϝ⧋āĻ— āĻ•āϰ⧇ āĻāĻ•āϟāĻž āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāϞ⧇, āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇āĨ¤

    $$ ABDE + ACFE – BCFD = \Delta ABC $$

    Trapezium -āĻāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻŦ⧇āĻļ āϏ⧋āϜāĻžāĨ¤ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻĻ⧁āĻŸā§‹ āĻŦāĻžāĻšā§ āϝ⧋āĻ— āĻ•āϰ⧋āĨ¤ āϝ⧋āĻ—āĻĢāϞ-āϕ⧇ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§āϰ āĻĻ⧁āϰāĻ¤ā§āĻ¤ā§āĻŦ āĻĻāĻŋā§Ÿā§‡ āϗ⧁āĻŖ āĻ•āϰ⧋āĨ¤ āĻļ⧇āώāĻŽā§‡āĻļ ⧍ āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĻāĻžāĻ“āĨ¤ āĻŦā§āϝāĻžāϏ āĻšā§Ÿā§‡ āϗ⧇āϞ⧋āĨ¤

    $$ \frac{1}{2} \times \textrm{(sum of parallel sides)} $$

    $$ \times \textrm{(distance between parallel sides)} $$

    (āĻāχ āϏ⧂āĻ¤ā§āϰāϟāĻž āĻ“āχ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻĨ⧇āϕ⧇āχ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤ Trapezium-āϕ⧇ āĻĻ⧁āχ āϟ⧁āĻ•āϰ⧋ āĻ•āϰ⧇ āύāĻžāĻ“ āϝ⧇ āϕ⧋āύ⧋ diagonal āĻāρāϕ⧇āĨ¤ āϤāĻžāϰāĻĒāϰ āϏ⧇āχ āĻ¤ā§āϰāĻŋāϭ⧁āϜ āϟ⧁āĻ•āϰ⧋ āĻĻ⧁āĻŸā§‹āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āϝ⧋āĻ— āĻ•āϰ⧋āĨ¤)

    āĻ…āϤāĻāĻŦ āϞāĻŋāϖ⧇ āĻĢ⧇āϞāĻž āϝāĻžāĻ• āĻĒ⧁āϰ⧋āϟāĻžāσ

    $$ ABDE + ACFE – BCFD = \Delta ABC $$

    $$ ABDE = \frac{1}{2} \times (y_1 + y_2) \times (x_1 – x_2) $$

    $$ ACFE = \frac{1}{2} \times (y_1 + y_3) \times (x_3 – x_1) $$

    $$ BCFD = \frac{1}{2} \times (y_2 + y_3) \times (x_3 – x_2) $$

    āĻŦā§āϝāϏ āφāϰ āĻ•āĻŋ! āĻĻ⧁āĻŸā§‹āϕ⧇ āϝ⧋āĻ— āĻ•āϰ⧇ āĻāĻ•āϟāĻžāϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰ⧇ āĻĻāĻžāĻ“āĨ¤

    Coordinate āĻĻāĻŋā§Ÿā§‡ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āϞāĻŋāĻ–āϤ⧇ āϗ⧇āϞ⧇, āϤ⧋āĻŽāĻžā§Ÿ Trapezium-āϕ⧇ āϛ⧁āĻā§Ÿā§‡ āφāϏāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻāĻŦāĻžāϰ āĻĒā§āϰāĻļā§āύ āĻšāϞ⧋ āĻāχ āϤāĻŋāύāĻŸā§‡ āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋ⧟āĻžāĻŽ āĻ•āĻ–āύ parallelogram āĻšāϤ⧇ āĻĒāĻžāϰ⧇? āĻŽāύ⧇ āĻŽāύ⧇ āĻ­āĻžāĻŦā§‹ āϝ⧇ BC āĻšāĻšā§āϛ⧇ x-axis-āĻāϰ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞāĨ¤ āϤāĻž āĻšāϞ⧇ BCFD āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇ paralleogramāĨ¤ āĻŦāĻžāĻ•āĻŋ āĻĻ⧁āĻŸā§‹ Trapezium āĻ•āĻŋāĻ¨ā§āϤ⧁ parallogram āĻšāĻŦ⧇ āύāĻžāĨ¤ āĻāĻ• āĻ•āĻžāϜ āĻ•āϰ⧋āĨ¤ A āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϕ⧇ āĻ•ā§āϰāĻŽāĻļ BC-āϰ āĻĻāĻŋāϕ⧇ āύāĻžāĻŽāĻŋā§Ÿā§‡ āφāύ⧋āĨ¤ āĻĻ⧇āĻ–āĻŦ⧇ ABDE āφāϰ ACFE āĻ•ā§āϰāĻŽāĻļ parallelogram āĻšā§Ÿā§‡ āωāĻ āϛ⧇āĨ¤ āϝ⧇āχ āύāĻž A āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϟāĻž BC āĻ¸ā§āĻĒāĻ°ā§āĻļ āĻ•āϰāĻŦ⧇, āϤāĻžāϰāĻž parallelogram āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇āĨ¤ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇ ā§ĻāĨ¤

    āϤāĻžāĻšāϞ⧇ āĻāĻ­āĻžāĻŦ⧇ āĻ­āĻžāĻŦāϤ⧇ āĻĒāĻžāϰ⧋ āϝ⧇ trapezium āĻĻ⧁āĻŸā§‹āϰ parallelogram āύāĻž āĻšāĻ“ā§ŸāĻžāϰ āĻ•āĻžāϰāĻŖ āĻšāϞ⧋ A āĻŦāĻŋāĻ¨ā§āĻĻ⧁āϰ āĻŽāĻžāĻĨāĻž āωāρāϚāĻŋā§Ÿā§‡ āĻĨāĻžāĻ•āĻžāĨ¤ āϏ⧇ āĻŽāĻžāĻĨāĻž āύāĻžāĻŽāĻžāϞ⧇āχ āϏāĻŦ āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇āĨ¤

    āĻ•ā§āϰāĻŽāĻļ Parallelogram āĻšā§Ÿā§‡

    āωāĻ āϛ⧇ āĻĻ⧁āχ Trapezium

  • āϏāĻŦ āϰ⧇āĻ•āĻŸā§āϝāĻžāĻ™ā§āϗ⧇āϞ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ¸ā§āĻ•ā§‹ā§ŸāĻžāϰ āύ⧟

    āϏāĻŦ āϰ⧇āĻ•āĻŸā§āϝāĻžāĻ™ā§āϗ⧇āϞ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ¸ā§āĻ•ā§‹ā§ŸāĻžāϰ āύ⧟

    āϚāĻžāϰāĻŸā§‡ āĻŦāĻžāĻšā§ āĻĨāĻžāĻ•āϞ⧇āχ āĻšāϞ⧋ āύāĻžāĨ¤ āϤāϞāĻžā§Ÿ āϤāϞāĻžā§Ÿ āĻ…āĻ¨ā§āϝ āĻ–āĻŦāϰ āφāϛ⧇āĨ¤

    āĻŽāύ⧇ āĻ•āϰ⧋ āϤ⧋āĻŽāĻžāϰ āĻ•āĻžāϛ⧇ āϚāĻ˛ā§āϞāĻŋāĻļāϟāĻž āχāρāϟ āφāϛ⧇āĨ¤ āĻĒā§āϰāϤāĻŋāϟāĻŋ āχāρāϟ āĻāĻ• āĻĢ⧁āϟ āϞāĻŽā§āĻŦāĻžāĨ¤ āϤ⧁āĻŽāĻŋ āĻāĻ•āϟāĻž rectangle āĻŦāĻžāύāĻžāϤ⧇ āϚāĻžāĻ“āĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϝ⧇āĻŽāύ āϤ⧇āĻŽāύ āĻāĻ•āϟāĻž rectangle āĻŦāĻžāύāĻžāϞ⧇ āĻšāĻŦ⧇ āύāĻžāĨ¤ āϝ⧇ āϚāϤ⧁āĻ°ā§āϭ⧁āϜāϟāĻž āĻŦāĻžāύāĻžāĻŦ⧇ āϤāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āϝāϤāϟāĻž āϏāĻŽā§āĻ­āĻŦ āĻŦ⧜ āĻšāϤ⧇ āĻšāĻŦ⧇āĨ¤

    āϧāϰ⧋ āϞāĻŽā§āĻŦāĻž āϞāĻŽā§āĻŦāĻŋ āώ⧋āϞ⧋ āĻĢ⧁āϟ āχāρāϟ āĻŦāϏāĻžāϞ⧇āĨ¤ āĻ†ā§œāĻžāĻ†ā§œāĻŋ āĻŦāϏāϞ āϚāĻžāϰ āĻĢ⧁āϟ āχāρāϟāĨ¤ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšāϞ⧋ āϚāĻžāϰ – āώ⧋āϞ⧋ āϚ⧌āώāĻŸā§āϟāĻŋāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϝāĻĻāĻŋ āϞāĻŽā§āĻŦāĻž āϞāĻŽā§āĻŦāĻŋ āĻšā§‹āĻĻā§āĻĻ āĻĢ⧁āϟ āχāρāϟ āĻŦāϏāĻžāĻ“ āφāϰ āĻ†ā§œāĻžāĻ†ā§œāĻŋ āĻ›ā§Ÿ āĻĢ⧁āϟ āĻ•āϰ⧇, āϤāĻžāĻšāϞ⧇ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšāĻŦ⧇ āĻ›ā§Ÿ āϗ⧁āĻŖ āĻšā§‹āĻĻā§āĻĻā§‹ āϏāĻŽāĻžāύ āϚ⧁āϰāĻžāĻļāĻŋ! āĻŽāĻžāύ⧇ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦā§‡ā§œā§‡ āϗ⧇āϞāĨ¤

    āĻ āĻŋāĻ• āĻ•āĻŋ āϰāĻ•āĻŽā§‡āϰ āϚāϤ⧁āĻ°ā§āϭ⧁āϜ āĻŦāĻžāύāĻžāϞ⧇ āϏāĻŦāĻšā§‡ āĻŦ⧇āĻļāĻŋ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āϘāĻŋāϰ⧇ āĻĢ⧇āϞāĻž āϝāĻžā§Ÿ? āĻāχ āϏāĻ¤ā§āϝ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ…āĻ™ā§āĻ• āĻ•āώ⧇ āĻĒ⧌āρāĻ›āĻžāύ⧋ āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇āĨ¤

    āϧāϰāĻž āϝāĻžāĻ• āϰ⧇āĻ•āĻŸā§āϝāĻžāĻ™ā§āϗ⧇āϞāϟāĻžāϰ āĻāĻ•āϟāĻž āĻŦāĻžāĻšā§ āĻšāϞ⧋ x āĻĢ⧁āϟāĨ¤ āϤāĻŦ⧇ āĻ…āĻ¨ā§āϝ āĻŦāĻžāĻšā§ āĻšāĻŦ⧇ 20 – x āĻĢ⧁āϟāĨ¤ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšāĻŦ⧇ $$ x(20-x) = 20x – x^2 $$

    āĻāχ āĻāĻ•ā§āϏāĻĒā§āϰ⧇āĻļāύāϟāĻž āφāĻŽāϰāĻž āĻāĻ•āϟ⧁ āϘ⧁āϰāĻŋā§Ÿā§‡ āϞāĻŋāĻ–āĻŦāĨ¤

    $$ 10^2 – (10^2 – 2 \times 10 \times x + x^2) $$

    āĻāĻŦāĻžāϰ āĻ•āĻŋāĻ¨ā§āϤ⧁ āφāĻŽāϰāĻž āϏāĻ¤ā§āϝ⧇āϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋāĨ¤ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻšāĻšā§āϛ⧇āĨ¤

    $$ 100 – (10 – x)^2 $$

    āĻāχ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻž āϏāĻŦāϏāĻŽā§Ÿ ā§§ā§Ļā§Ļ-āϰ āĻĨ⧇āϕ⧇ āĻ•āĻŽ āĻšāĻŦ⧇ āĻ•āĻžāϰāĻŖ āφāĻŽāϰāĻž ā§§ā§Ļā§Ļ-āϰ āĻĨ⧇āϕ⧇ āĻāĻ•āϟāĻž āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāĻ›āĻŋāĨ¤ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āϏāĻ°ā§āĻŦāĻĻāĻž āĻĒāϜāĻŋāϟāĻŋāĻ­ āĻšā§ŸāĨ¤ āĻ…āϤāĻāĻŦ āφāĻŽāϰāĻž ā§§ā§Ļā§Ļ-āϰ āĻĨ⧇āϕ⧇ āϕ⧋āύ⧋ āĻāĻ•āϟāĻž āĻĒāϜāĻŋāϟāĻŋāĻ­ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāĻ›āĻŋāĨ¤ āĻ…āϤāĻāĻŦ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ ā§§ā§Ļā§Ļ-āϰ āĻ•āĻŋāϛ⧁āϟāĻž āĻ•āĻŽ āĻšāĻŦ⧇āĨ¤

    āφāĻŽāϰāĻž āϝ⧇āĻšā§‡āϤ⧁ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āϏāĻŽā§āĻ­āĻžāĻŦā§āϝ āĻŽāĻžāύ āϚāĻžāχ, āĻ…āϤāĻāĻŦ, \( (10-x)^2 \) āϝāϤāϟāĻž āĻĒāĻžāϰāĻž āϝāĻžā§Ÿ āĻ•āĻŽāĻŋā§Ÿā§‡ āĻĢ⧇āϞāĻž āϝāĻžāĻ•āĨ¤ āϭ⧇āĻŦ⧇ āĻĻ⧇āĻ–ā§‹ x = 10 āĻšāϞ⧇ \( (10-x)^2 \) āĻŽāĻžāύ āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻ•āĻŽ āĻšāĻŦ⧇ (ā§Ļ āĻšā§Ÿā§‡ āϝāĻžāĻŦ⧇)āĨ¤ x = 10 āϝ⧇āχ āύāĻž āĻŦāϏāĻŋā§Ÿā§‡āϛ⧋, āϰ⧇āĻ•ā§āĻŸā§āϝāĻžāĻ™ā§āϗ⧇āϞāϟāĻž āĻŦ⧇āĻŽāĻžāϞ⧁āĻŽ āĻ¸ā§āĻ•ā§‹ā§ŸāĻžāϰ āĻšā§Ÿā§‡ āϗ⧇āϛ⧇!

    āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻāĻ• āϗ⧁āĻšā§āĻ› rectangle-āϕ⧇ āĻāĻŦāĻžāϰ āĻ•ā§āϰāĻŽāĻļ square āĻšā§Ÿā§‡ āωāĻ āϤ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇ āĻŽāĻžāύāϏāϚāĻ•ā§āώ⧇āĨ¤ āϝāϤ āφāĻŽāϰāĻž āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦāĻžā§œāĻžāĻšā§āĻ›āĻŋ rectangle-āĻāϰ square-āĻĒāύāĻž āĻŦā§‡ā§œā§‡ āϚāϞ⧇āϛ⧇āĨ¤ āĻļ⧇āώāĻŽā§‡āĻļ āϏ⧇ āĻ¸ā§āĻ•ā§‹ā§ŸāĻžāϰ āĻšā§Ÿā§‡āχ āϝāĻžāĻšā§āϛ⧇āĨ¤ āϏ⧇āĻ–āĻžāύ⧇āχ āϤāĻžāϰ āĻŽā§āĻ•ā§āϤāĻŋāĨ¤ āϏ⧇āĻ–āĻžāύ⧇āχ āϤāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ⧇āϰ āωāĻ°ā§āϧ āϏ⧀āĻŽāĻžāĨ¤

  • 3 new problems

    I sometimes create small problems (mostly at pre-college level), to have fun. Here are three recent ones. Readers may give it a try or point out issues with problem-statement or indicate that it is trivial.

    Please note that some version of these problems may exist somewhere as there is a tendency of familiar ideas to echo through the brain. May be I have read something like this somewhere in the past. At any rate, this is just some musing for fun.

    Problem 1

    A connected, directed graph is called a ‘Calcutta Graph’ if degree of every vertex is 3, each vertex has exactly two incoming edges and one outgoing edge.

    Suppose G is a Calcutta Graph with n vertices. Then at most how many directed circuits can G have?

    Problem 2

    A $n \times n$ grid is made up of $n^2$ squares. In each square you are allowed to draw one diagonal. If $k$ diagonals line-up, end-to-end, then they make a path of length $k$. The figure below shows a $4 \times 4$ grid with a path of length $6$.

    Find the maximum number of paths of length $2n$ in a $n \times n$ grid.

    Problem 3

    Suppose $n$ circles and $n$ (infinite) lines are drawn in the plane such that

    1. No three lines pass through a single point
    2. No three circles pass through a single point
    3. Every pair of circles intersect each other at two distinct points
    4. Every pair of lines intersect each other at one point
    5. Every line cuts every circle at two distinct points.

    How many regions are created in this process?

  • Journal of a solo mathematician

    The graduate-school days are zooming away quickly from my life. It seems that the space of human memory is hyperbolic in nature. Things get thin and small at an exponential rate. I defended my thesis in July 2020 and reached India in August of the same year. The pandemic was in full swing. It was a conscious choice to return to my aging family who needed support.

    Almost all of 2021 was spent on the paper that Chris and I were working on. It is an extension of the results in my doctoral thesis. We showed that connected boundary of a relatively hyperbolic group is locally connected. This removed some of the tameness restrictions that Bowditch’s theorem has on the peripheral subgroups. At the end of 2021, my advisor suggested that I should work on some projects alone.

    For a few days, I felt like a radarless ship in the ocean of mathematics. Since I was not associated with any university at the time, research had to be a solo adventure. I decided to build a small research group at Cheenta. It is the organisation that I developed from scratch since 2010.

    Cheenta was conceived as a training school for math olympiads for school students. Subsequently we have also accepted college students for university level programs. We already have a strong alumni and student base spread all around the world. I could easily get a few people who became curious about geometric group theory.

    We started meeting weekly. In order to keep a psychological leverage, I put the meeting time on Tuesdays at 10:30 PM IST or 11 AM CST. In graduate school, that was the time when I met my advisor weekly. My brain-clock responded to this procedure and a group of 7 students was assembled for weekly adventures in geometric group theory.

    2022 was also productive. I managed to prove a small theorem related to Dehn fillings and connectedness of Bowditch boundary. The entire team participated in a translation project of the famous green book by Ghys and Harpe from French to English. I also started collaborating with Arka Banerjee on another problem related to embedding of hyperbolic plane in relatively hyperbolic groups.

    I hope 2023 will be productive. I want to understand how small cancellation theory, and splittings of relatively hyperbolic groups interact. It could be a powerful source of examples in group theory. Another area that interests me is the theory of hierarchically hyperbolic groups and spaces.

    There are a few obstacles for my research activities. Books and journals are not easily available outside the university system. Access to conferences is hard. I was invited to speak at a conference in Ohio (to be held in April). However due to VISA and funding issues I was forced to decline the offer. There are few positive ends as well. My work at Cheenta allows me to have flexible work-hours and financial security. It also helps me to stay with my family at home.

    Lets hope 2023 will be productive with what I have.

  • Geometry problems in math olympiads

    This is an ongoing survey of olympiad problems. Source material is INMO, USAMO and IMO. The goal is to indicate key ideas involved in the proof.

    USAMO 2010 Problem 1

    Let $A X Y Z B$ be a convex pentagon inscribed in a semicircle of diameter $A B$. Denote by $P, Q, R, S$ the feet of the perpendiculars from $Y$ onto lines $A X, B X$, $A Z, B Z$, respectively. Prove that the acute angle formed by lines $P Q$ and $R S$ is half the size of $\angle X O Z$, where $O$ is the midpoint of segment $A B$.

    Key Concepts

    • Angle at centre is twice the angle at circumference
    • External angle in a cyclic quadrilateral is equal to the interior opposite angle
    • Simson Line
    • Cyclic Pentagon

    Idea of Proof

    If we use Simson line (feet of perpendiculars from a point in the circumference, in this case $Y$, to three sides of a triangle (in this case $\Delta A X B$ and $\Delta A Z B$) are collinear), then we immediately conclude that $PQ$ and $RS$ meet at a point $M$ on the diameter $AB$. Here is part of the picture.

    Next notice that we have a cyclic pentagon $A P Y R M$. Now angle chasing shows $\angle Z M Y = \angle Z A Y$ and so on. This proof is suggested in Evan Chen’s notes.

    Alternatively we may do angle chasing. Here the key idea is to show $M C Y D$ is a cyclic quadrilateral.

    INMO 2014 Problem 5

    In an acute-angled triangle $A B C$, a point $D$ lies on the segment $B C$. Let $O_1, O_2$ denote the circumcentres of triangles $A B D$ and $A C D$, respectively. Prove that the line joining the circumcentre of triangle $A B C$ and the orthocentre of triangle $O_1 O_2 D$ is parallel to $B C$.

    Key Concepts

    • Similarity of triangles
    • Cyclic pentagon
    • Angles at orthocenter
    • Angle at the centre of a circle is twice the angle at circumference

    Idea of Proof

    Notice the $H$ and $O$ are orthocenter and circumcenter of two different triangles $\Delta O_1 O_2 D$ and $\Delta ABC$. One recurring theme in geometry is to bind special points in different triangles via cyclic pentagons. A major step in this problem is to identify $A O_1 H O O_2$ as a cyclic pentagon. In fact notice that $\Delta A O_1 O_2$ is similar to $\Delta A B C$ is similar to $O_1 O_2 D$.

    INMO 2016 Problem 1

    Let \( ABC \) be triangle in which \( AB = AC \). Suppose the orthocentre of the triangle lies on the in-circle. Find the ratio \( \frac{AB}{BC} \).

    Idea of proof

    Suppose \( H \) is the orthocenter and \( I \) is the incenter. Suppose \(AD\) is the perpendicular cum angle bisector passing through \( H \) and \( I\) meeting \( BC \) at \( D \).

    Then \( \tan \frac{B}{2} = \frac{r}{BD} \), the inradius.

    We can also show \( \tan \frac{A}{2} = \frac{2r}{BD} \).

    Since \( A = \pi – 2B \), doing some trigonometry we obtain the value of \( \cos B \). The final answer is equivalent to \( \frac{1}{2 \cos B } \) which turns out to be \( \frac {3}{4} \).

    INMO 2014 Problem 1

    In a triangle \( ABC \), let \(D\) be a point on the segment \(BC\) such that \(AB + BD = AC + CD\). Suppose that the points \(B, C\) and the centroids of triangles \(ABD\) and \(ACD\) lie on a circle. Prove that \(AB = AC\).

    Key Concepts

    • Parallel lines divide sides in equal ratios
    • Apollonious Theorem
    • Triangular Inequality
    • Centroid divides median in \( \frac{2}{1} \) ratio.

    Proof Idea

    Suppose \( T \) is the midpoint of \(AD\). If \(G_1\) and \( G_2 \) are the two medians, we show that \(G_1 G_2\) is parallel to \( BC \).

    Then \(B G_1 G_2 C\) is a cyclic trapezium. This implies \(BT = CT\)

    Now apply Apollonious theorem to deduce that \(AB^2 + BD^2 = AC^2 + CD^2\)

    Finally notice that \(AB + BD = AC + CD\) from given hypothesis. Transposing we get \(AB^2 – AC^2 = CD^2 – BD^2\). Hence either \(CD – BD\) cancels out with \(AB – AC \) provided both the non-zero, or we have \(AB + AC = BD + CD\). The second case is impossible as it violates triangular inequality. Hence the first case holds.